Maths Progression

Intent
 knowledge rapidly and accurately.

- Children can reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language.

 Maths Shed, Timestables Rockstars, Hamilton Trust and Twinkl.
- Children will use mathematical vocabulary appropriate to their year group (appendix 2) to further develop and demonstrate their understanding

Implementation

 through adult lead carpet sessions and also during continuous provision, where children develop their own lines of enquiry.

 and money.

 measure and number.

 introduced to the language of algebra as a means for solving a variety of problems. Pupils classify shapes with increasingly complex geometric properties and that they learn the vocabulary they need to describe them

Impact

Level expected at the end of EYFS

Number

ELG Children at the expected level of development will:

- Have a deep understanding of number to 10 , including the composition of each number;

Subitise (recognise quantities without counting) up to 5 ;

- Automatically recall (without reference to rhymes counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts.

Numerical Patterns

National Curriculum Aims

The national curriculum for mathematics aims to ensure that all pupils:

* become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
\& reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language * can solve problems by applying their mathematics to a variety of routine and nonroutine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

ELG Children at the expected level of development will:

- Verbally count beyond 20, recognising the pattern of the counting system;

Compare quantities up to 10 in different contexts,
recognising when one quantity is greater than, less than or the same as the other quantity;

Explore and represent patterns within numbers up to 10,
including evens and odds, double facts and how quantities can be distributed equally.

Key Area	EY	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Place value counting	Reception - Count objects, actions and sounds. - Subitise - Count beyond ten ELG - Have a deep understanding of numbers to 10 , including the composition of each number - Subitise to 5 . - Verbally count to 20 , recognizing the pattern of the counting system.	- count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number - Count numbers to 100 in numerals; count in multiples of twos, fives and tens	- count in steps of 2,3, and 5 from 0 , and in tens from any number, forward and backward	- count from 0 in multiples of 4, 8,50 and 100 ; find 10 or 100 more or less than a given number	- count in multiples of 6,7,9, 25 and 1000 - count backwards through zero to include negative numbers	count forwards or backwards in steps of powers of 10 for any given number up to 1 000000 - count forwards and backwards with positive and negative whole numbers, including through zero	
Place value represent	Reception - Link the number symbol with its cardinal number value ELG - Identify and represent numbers with objects and pictorial representations including introduction to a number line	identify and represent numbers using objects and pictorial representations - read and write numbers to 100 in numerals - read and write numbers from 1 to 20 in numerals and words.	read and write numbers to at least 100 in numerals and in words - identify, represent and estimate numbers using different representations, including the number line	- identify, represent and estimate numbers using different representations - read and write numbers up to 1000 in numerals and in words	- identify, represent and estimate numbers using different representations - read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value	- read, write, (order and compare) numbers to at least 1000000 and determine the value of each digit - read Roman numerals to 1000 (M) and recognise years written in Roman numerals.	read, write, (order and compare) numbers up to 10000000 and determine the value of each digit
Place value - use PV and compare	Reception - Compare numbers - Understand the one more than/one less than relationship between consecutive ELG - Compare quantities up to 10 in different contexts, recognizing when one quantity is greater than, less than or the same as the other quantity	- given a number, identify one more and one less	recognise the place value of each digit in a two-digit number (tens, ones) - compare and order numbers from 0 up to 100; use <, > and = signs	- recognise the place value of each digit in a three-digit number (hundreds, tens, ones) - compare and order numbers up to 1000	find 1000 more or less than a given number - recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones) - order and compare numbers beyond 1000	- (read, write), order and compare numbers up to 10 000000 and determine the value of each digit	- (read, write), order and compare numbers up to 10 000000 and determine the value of each digit

Place value problems and reasoning			- use place value and number facts to solve problems.	- solve number problems and practical problems involving these ideas	- round any number to the nearest 10,100 or 1000 - solve number and practical problems that involve all of the above and with increasingly large positive numbers	- interpret negative numbers in context - round any number up to 1000000 to the nearest 10, 100, 1000, 10000 and 100000 - solve number problems and practical problems that involve all of the above	- round any whole number to a required degree of accuracy - use negative numbers in context, and calculate intervals across zero - solve number and practical problems that involve all of the above
Addition \& subtraction recall, represent, use	Reception - Explore the composition of numbers to 10 - Automatically recall number bonds for numbers 0-10 - Begin to understand the operations of addition and subtraction and use associated vocabulary. - Begin to understand mathematical symbols associated with addition and subtraction ELG - Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some numbers bonds to 10 including double facts.	- read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs - represent and use number bonds and related subtraction facts within 20	. recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 - show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot - recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems	estimate the answer to a calculation and use inverse operations to check answers	. estimate and use inverse operations to check answers to a calculation	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	
Addition \& subtraction calculations		add and subtract onedigit and two-digit numbers to 20 , including zero	- add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones a two-digit number and tens two two-digit numbers adding three one-digit numbers	add and subtract numbers mentally, including: a three-digit number and ones a three-digit number and tens a three-digit number and hundreds - add and subtract numbers with up to three digits, using formal written methods of columnar addition and	add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) - add and subtract numbers mentally with increasingly large numbers	- perform mental calculations, including with mixed operations and large numbers - use their knowledge of the order of operations to carry out calculations involving the four operations

				subtraction			
Addition \& subtraction solve problems		solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$ - -9	- solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	- solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why	. solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why - solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
Multiplication \& division - recall, represent, use			- recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers - show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot	- recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables	- recall multiplication and division facts for multiplication tables up to 12×12 - use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1; multiplying together three numbers - recognise and use factor pairs and commutativity in mental calculations	identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers - know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers - establish whether a number up to 100 is prime and recall prime numbers up to 19 - recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3)	identify common factors, common multiples and prime numbers - use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

Fractions calculations			write simple fractions for example, $\frac{1}{2}$ of $6=$ 3	Add and subtract fractions with the same denominator within one whole	add and subtract fractions with the same denominator		add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions multiply simple pairs of proper fractions, writing the answer in its simplest form [for example, $\left.\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}\right]$ divide proper fractions by whole numbers [for example, $\frac{1}{3} \div 2=\frac{1}{6}$]
Fractions - solve problems				solve problems that involve all of the above	solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number		
Decimals recognise and write					recognise and write decimal equivalents of any number of tenths or hundredths recognise and write decimal equivalents to $\frac{1}{4} \frac{1}{2} \frac{3}{4}$	read and write decimal numbers as fractions for example, $\left.0.71=\frac{71}{100}\right]$ - recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents	identify the value of each digit in numbers given to three decimal places
Decimals compare					round decimals with one decimal place to the nearest whole number compare numbers with the same number of decimal places up to two decimal places	round decimals with two decimal places to the nearest whole number and to one decimal place - read, write, order and compare numbers with up to three decimal places	

Decimals calculations and problems					- find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths	solve problems involving number up to three decimal places	multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places - multiply one-digit numbers with up to two decimal places by whole numbers - use written division methods in cases where the answer has up to two decimal places - solve problems which require answers to be rounded to specified degrees of accuracy
Fractions, decimals and percentages					solve simple measure and money problems involving fractions and decimals to two decimal places	recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal solve problems which require knowing percentage and decimal equivalents of $\frac{1}{2}, \frac{1}{4}, \frac{1}{5}, \frac{2}{5}, \frac{4}{5}$ and those fractions with a denominator of a multiple of 10 or 25	associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example, $\frac{3}{8}$] - recall and use equivalences between simple fractions, decimals and percentages, including in different contexts
Ration and proportion							solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts - solve problems involving the calculation of

							percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison - solve problems involving similar shapes where the scale factor is known or can be found - solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.
Algebra		solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as 7 = $\square-9$	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems	- solve problems, including missing number problems			. use simple formulae . generate and describe linear number sequences - express missing number problems algebraically - find pairs of numbers that satisfy an equation with two unknowns - enumerate possibilities of combinations of two variables.
Measurement using measures	Reception - Compare length, weight and capacity - To use prior vocabulary and supplement with Lightest/heaviest/ Tallest/shortest/ Half full/quickest/ Slowest	. compare, describe and solve practical problems for: lengths and heights [for example, long/short, longer/shorter, tall/short, double/half] mass/weight [for example, heavy/ligh heavier than, lighter than] capacity and volume	choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg/g); temperature $\left({ }^{\circ} \mathrm{C}\right)$; capacity (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels compare and order lengths, mass,	measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity	- Convert between different units of measure [for example, kilometre to metre; hour to minute] - estimate, compare and calculate	- convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre) - understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints	- solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate - use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a

		[for example, full/empty, more than, less than, half, half full, quarter] time [for example, quicker, slower, earlier, later] measure and begin to record the following: lengths and heights > mass/weight capacity and volume time (hours, minutes, seconds)	volume/capacity and record the results using \rangle, <and =	(l/ml)	different measures	- use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling	smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places - convert between miles and kilometres
Measurement money	Reception - Begin to use terminology and representations of money during play	- recognise and know the value of different denominations of coins and notes	- recognise and use symbols for pounds (£) and pence (p); combine amounts to make a particular value - find different combinations of coins that equal the same amounts of money . solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change	add and subtract amounts of money to give change, using both $£$ and p in practical contexts	estimate, compare and calculate different measures, including money in pounds and pence	- use all four operations to solve problems involving measure [for example, money]	
Measurement time	Reception - To sequence a familiar set of events both fictional and nonfictional	sequence events in chronological order using language [for example, before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening] - recognise and use language relating to dates, including days of the week, weeks,	- compare and sequence intervals of time - tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times - know the number of minutes in an hour	- tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12hour and 24 -hour clocks - estimate and read time with increasing accuracy to the nearest minute; record and compare	- read, write and convert time between analogue and digital 12- and 24-hour clocks - solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to	. solve problems involving converting	. use, read, write and convert between standard units, converting measurements of time from a smaller unit of measure to a larger unit, and vice

Geometry - 2-D shapes	Reception - Select, rotate and manipulate shapes in order to develop spatial reasoning skills - Compose and decompose shapes so that children recognise a shape can have other shapes within it, just as numbers can. - Recognise and name common 2d and 3d shapes and talk about properties of sides, corners, edges, faces, curved and flat,	- recognise and name common 2-D shapes [for example, rectangles (including squares), circles and triangles]	- identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line - identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid] - compare and sort common 2-D shapes and everyday objects	- draw 2-D shapes	compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes - identify lines of symmetry in 2-D shapes presented in different orientations	- distinguish between regular and irregular polygons based on reasoning about equal sides and angles. - use the properties of rectangles to deduce related facts and find missing lengths and angles	- draw 2-D shapes using given dimensions and angles - compare and classify geometric shapes based on their properties and sizes - illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius
Geometry - 3D shapes		- recognise and name common 3-D shapes [for example, cuboids (including cubes), pyramids and spheres]	- recognise and name common 3-D shapes [for example, cuboids (including cubes), pyramids and spheres]. - compare and sort common 3-D shapes and everyday objects	- make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them		- identify 3-D shapes, including cubes and other cuboids, from 2-D representations	- recognise, describe and build simple 3-D shapes, including making nets
Geometry angles and lines				- recognise angles as a property of shape or a description of a turn - identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater	- identify acute and obtuse angles and compare and order angles up to two right angles by size - identify lines of symmetry in 2-D shapes presented in different orientations - complete a simple symmetric figure with respect to a specific line of symmetry	know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles - draw given angles, and measure them in degrees - identify: angles at a point and one whole turn (total 360ㅇ)	- find unknown angles in any triangles, quadrilaterals, and regular polygons - recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing

			quantity - ask and answer questions about totaling and comparing categorical data	presented in scaled bar charts and pictorrams and tables	an average graphs and other	graph	

